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LECTURE DATE CHAPTERS

1,2 SEP 24, 26 Chapter 21: Electric Charge

3,4 OCT 1,3 Chapter 22: Electric Fields

5,6 OCT 8,10 Chapter 23: Gauss’ Law

7,8 OCT 17,22,24 Chapter 24: Electric Potential

9,10 OCT 29, 31 Chapter 25: Capacitance

EXAM I (Chapter 21-25)

11,12 NOV 5,7 Chapter 26: Current and Resistance

13,14 NOV 12,14 Chapter 27: Circuits

15,16 NOV 19,21 Chapter 28: Magnetic Fields

17,18 NOV 26,28 Chapter 29: Magnetic Fields Due to Current

19,20 DEC 3,5 Chapter 30: Induction and Inductance

EXAM II (Chapter 26-30)

20,21 DEC10, 12
Chapter 31: Electromagnetic Oscillations and Alternating 
Current

22,23 DEC 17,19 Chapter 32: Maxwell’s Equations

24,26
JAN 7, 9, 
14,16,21

Chapter 33-34: Electromagnetic Waves - Images

FINAL EXAM (Chapter 21-34)

BEIRUT SECTION

Mainly, every week one chapter will be introduced in the order shown in the following 
table (tentative schedule).
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BYBLOS SECTION

LECTURE DATE CHAPTERS

1,2,3 SEP 23,25,27 Chapter 21: Electric Charge

4,5,6 SEP 30, OCT 2,4 Chapter 22: Electric Fields

7,8,9 OCT 7,9,11 Chapter 23: Gauss’ Law

10,11,12,13 OCT 16,18,21,23 Chapter 24: Electric Potential

14,15,16 OCT 25,28,30 Chapter 25: Capacitance

EXAM I (Chapter 21-25)

17,18,19 NOV 1,6,8 Chapter 26: Current and Resistance

20,21 NOV 11,15 Chapter 27: Circuits

22,23 NOV 18,20 Chapter 28: Magnetic Fields

24,25,26 NOV 25,27,29 Chapter 29: Magnetic Fields Due to Current

27,28,29 DEC 2,4,6 Chapter 30: Induction and Inductance

EXAM II (Chapter 26-30)

30,31,32 DEC 9,11,13
Chapter 31: Electromagnetic Oscillations and 
Alternating Current

33,34,35,36 DEC 16,18,20, 23 Chapter 32: Maxwell’s Equations

37,38,39,40,41 JAN 8,10,15,17,20
Chapter 33-34: Electromagnetic Waves - Images

FINAL EXAM (Chapter 21-34)

Mainly, every week one chapter will be introduced in the order shown in the following 
table (tentative schedule).
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Carl Friedrich Gauss (1777–1855)

Chapter 22: Electric field of an object
 We split the charge distribution up into charge 

elements dq, 
 Found the field due to an element, and resolved the 

vector into components. 
 Then we determined whether the components from 

all the elements would end up canceling or adding. 
 Finally we summed the adding components by 

integrating over all the elements, with several 
changes in notation along the way.

 One of the primary goals of physics is to find simple ways of solving such labor-
intensive problems.

 We can save far more work by using Gauss’ law
 Gauss’ law is an alternative method to calculate the electric field
 Gauss’ law considers a hypothetical (imaginary) closed surface (Gaussian 

surface) enclosing the charge distribution 
 The Gaussian surface mimics the symmetry of the charge distribution
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The problems in this chapter are of two types:
- Sometimes we know the charge and we use Gauss’ 

law to find the field at some point. 
- Sometimes we know the field on a Gaussian surface 

and we use Gauss’ law to find the charge enclosed by 
the surface. 

We need a quantitative way of determining how much 
electric field pierces a surface. That measure is called 
the electric flux.



Electric Flux

23-1
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23-1 Electric Flux

23.01 Identify that Gauss’ law 
relates the electric field at 
points on a closed surface 
(real or imaginary, said to be a 
Gaussian surface) to the net 
charge enclosed by that 
surface.

23.02 Identify that the amount of 
electric field piercing a surface 
(not skimming along parallel to 
the surface) is the electric flux 
Φ through the surface.

23.03 Identify that an area vector 
for a flat surface is a vector that 
is perpendicular to the surface 
and that has a magnitude equal 
to the area of the surface. 

23.04 Identify that any surface 
can be divided into area 
elements (patch elements) that 
are each small enough and flat 
enough for an area vector dA
to be assigned to it, with the 
vector perpendicular to the 
element and having a 
magnitude equal to the area of 
the element.

Learning Objectives
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23.05 Calculate the flux Φ 
through a surface by 
integrating the dot product of 
the electric field vector E and 
the area vector dA (for patch 
elements) over the surface, in 
magnitude- angle notation and 
unit-vector notation.

23.06 For a closed surface, 
explain the algebraic signs 
associated with inward flux 
and outward flux.

23.07 Calculate the net flux ϕ
through a closed surface, 
algebraic sign included, by 
integrating the dot product of 
the electric field vector E and 
the area vector dA (for patch 
elements) over the full surface.

23.08 Determine whether a 
closed surface can be broken 
up into parts (such as the sides 
of a cube) to simplify the 
integration that yields the net 
flux through the surface.
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23-1 Electric Flux

Electric field vectors and field 

lines pierce an imaginary, 

spherical Gaussian surface 

that encloses a particle with 

charge +Q.

Now the enclosed particle 

has charge +2Q.

Can you tell what the 

enclosed charge is now?

Answer: -0.5Q
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The area vector dA for an area element (patch element) on a surface is a vector 

that is perpendicular to the element and has a magnitude equal to the area dA of the 

element.

The electric flux dϕ through a patch element with area vector dA is given by a dot 

product:

(a) An electric field vector pierces a 

small square patch on a flat 

surface.

(b) Only the x component actually 

pierces the patch; the y component 

skims across it.

23-1 Electric Flux
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Now we can find the total flux by integrating the 

dot product over the full surface.

The total flux through a surface is given by

The net flux through a closed surface (which is 

used in Gauss’ law) is given by

where the integration is carried out over the 

entire surface.

23-1 Electric Flux
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23-1 Electric Flux

Flux through a closed cylinder, uniform field



GAUSS’ LAW
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23-2 Gauss’ Law

23.09 Apply Gauss’ law to relate 
the net flux ϕ through a closed 
surface to the net enclosed 
charge qenc.

23.10 Identify how the algebraic 
sign of the net enclosed 
charge corresponds to the 
direction (inward or outward) 
of the net flux through a 
Gaussian surface.

23.11 Identify that charge 
outside a Gaussian surface 
makes no contribution to the

net flux through the closed 
surface.

23.12 Derive the expression for 
the magnitude of the electric 
field of a charged particle by 
using Gauss’ law.

23.13 Identify that for a charged 
particle or uniformly charged 
sphere, Gauss’ law is applied 
with a Gaussian surface that is 
a concentric sphere.

Learning Objectives
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23-2 Gauss’ Law

Gauss’ law relates the net flux ϕ of an electric field 

through a closed surface (a Gaussian surface) to 

the net charge qenc that is enclosed by that 

surface. It tells us that

we can also write Gauss’ law as
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23-2 Gauss’ Law

Surface S1.The electric field is outward for all 

points on this surface. Thus, the flux of the electric 

field through this surface is positive, and so is the 

net charge within the surface, as Gauss’ law 

requires

Surface S2.The electric field is inward for all 

points on this surface. Thus, the flux of the electric 

field through this surface is negative and so is the 

enclosed charge, as Gauss’ law requires.

Two charges, equal in magnitude but opposite in sign, and 

the field lines that represent their net electric field. Four 

Gaussian surfaces are shown in cross section.
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23-2 Gauss’ Law

Surface S3.This surface encloses no charge, and 

thus qenc = 0. Gauss’ law requires that the net flux 

of the electric field through this surface be zero. 

That is reasonable because all the field lines pass 

entirely through the surface, entering it at the top 

and leaving at the bottom.

Surface S4.This surface encloses no net charge, 

because the enclosed positive and negative 

charges have equal magnitudes. Gauss’ law 

requires that the net flux of the electric field 

through this surface be zero. That is reasonable 

because there are as many field lines leaving 

surface S4 as entering it.

Two charges, equal in magnitude but opposite in sign, and 

the field lines that represent their net electric field. Four 

Gaussian surfaces are shown in cross section.



A Charged Isolated 
Conductor 
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23-3 A Charged Isolated Conductor 

23.14 Apply the relationship 
between surface charge 
density σ and the area over 
which the charge is uniformly 
spread.

23.15 Identify that if excess 
charge (positive or negative) is 
placed on an isolated 
conductor, that charge moves 
to the surface and none is in 
the interior.

23.16 Identify the value of the 
electric field inside an isolated 
conductor.

23.17 For a conductor with a cavity 
that contains a charged object, 
determine the charge on the cavity 
wall and on the external surface. 

23.18 Explain how Gauss’ law is used 
to find the electric field magnitude E
near an isolated conducting surface 
with a uniform surface charge 
density σ. 

23.19 For a uniformly charged 
conducting surface, apply the 
relationship between the charge 
density σ and the electric field 
magnitude E at points near the 
conductor, and identify the direction 
of the field vectors.

Learning Objectives
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23-3 A Charged Isolated Conductor 

+

+
+

+

+

+

+
++

+

 The electric field inside a conductor is  zero

 Gauss’ law is used to find the electric field 
magnitude E near an isolated conducting 
surface with a uniform surface charge 
density σ. 
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(a) Perspective view

(b) Side view of a tiny portion of a large, isolated 

conductor with excess positive charge on its 

surface. A (closed) cylindrical Gaussian surface, 

embedded perpendicularly in the conductor, 

encloses some of the charge. Electric field lines 

pierce the external end cap of the cylinder, but 

not the internal end cap. The external end cap 

has area A and area vector A.

23-3 A Charged Isolated Conductor 



Applying Gauss’ Law: 
Cylindrical Symmetry 

23-4
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23-4 Applying Gauss’ Law: Cylindrical Symmetry 

23.20 Explain how Gauss’ law is 
used to derive the electric field 
magnitude outside a line of 
charge or a cylindrical surface 
(such as a plastic rod) with a 
uniform linear charge density 
λ.

23.21 Apply the relationship 
between linear charge density 
λ on a cylindrical surface and 
the electric field magnitude E
at radial distance r from the 
central axis.

23.22 Explain how Gauss’ law 
can be used to find the electric 
field magnitude inside a 
cylindrical non-conducting 
surface (such as a plastic rod) 
with a uniform volume charge 
density ρ.

Learning Objectives
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23-4 Applying Gauss’ Law: Cylindrical Symmetry 

Figure shows a section of an infinitely long 

cylindrical plastic rod with a uniform charge 

density λ. The charge distribution and the field have 

cylindrical symmetry. To find the field at radius r, we 

enclose a section of the rod with a concentric 

Gaussian cylinder of radius r and height h. 

The net flux through the cylinder from Gauss’ Law 

reduces to

yielding 

A Gaussian surface in the 

form of a closed cylinder 

surrounds a section of a very 

long, uniformly charged, 

cylindrical plastic rod.



Applying Gauss’ Law: 
Planar Symmetry 
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23-5 Applying Gauss’ Law: Planar Symmetry 

23.23 Apply Gauss’ law to derive 
the electric field magnitude E
near a large, flat, non-
conducting surface with a 
uniform surface charge 
density σ.

23.24 For points near a large, 
flat non-conducting surface 
with a uniform charge density 
σ, apply the relationship 
between the charge density 
and the electric field 
magnitude E and also specify 
the direction of the field.

23.25 For points near two large, 
flat, parallel, conducting 
surfaces with a uniform charge 
density σ, apply the relationship 
between the charge density and 
the electric field magnitude E
and also specify the direction of 
the field.

Learning Objectives
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23-5 Applying Gauss’ Law: Planar Symmetry 

Figure (a-b) shows a portion of a thin, infinite, non-

conducting sheet with a uniform (positive) surface 

charge density σ. A sheet of thin plastic wrap, 

uniformly charged on one side, can serve as a 

simple model. 

Gauss’ Law,

becomes

where σA is the charge enclosed by the Gaussian 

surface. This gives

Non-conducting Sheet
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23-5 Applying Gauss’ Law: Planar Symmetry 

Figure (a) shows a cross section of a thin, 

infinite conducting plate with excess 

positive charge. Figure (b) shows an 

identical plate with excess negative charge 

having the same magnitude of surface 

charge density σ1.

Suppose we arrange for the plates of Figs.

a and b to be close to each other and 

parallel (c). Since the plates are 

conductors, when we bring them into this 

arrangement, the excess charge on one 

plate attracts the excess charge 

Two conducting Plates

on the other plate, and all the excess charge moves onto the inner faces of the 

plates as in Fig.c. With twice as much charge now on each inner face, the electric 

field at any point between the plates has the magnitude
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Applying Gauss’ Law: 
Spherical Symmetry 
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23-6 Applying Gauss’ Law: Spherical Symmetry 

23.26 Identify that a shell of 
uniform charge attracts or 
repels a charged particle that 
is outside the shell as if all the 
shell’s charge is concentrated 
at the center of the shell.

23.27 Identify that if a charged 
particle is enclosed by a shell 
of uniform charge, there is no 
electrostatic force on the 
particle from the shell.

23.28 For a point outside a 
spherical shell with uniform

charge, apply the relationship 
between the electric field 
magnitude E, the charge q on the 
shell, and the distance r from the 
shell’s center.

23.29 Identify the magnitude of the 
electric field for points enclosed by 
a spherical shell with uniform 
charge.

23.30 For a uniform spherical charge 
distribution (a uniform ball of 
charge), determine the magnitude 
and direction of the electric field at 
interior and exterior points.

Learning Objectives
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23-6 Applying Gauss’ Law: Spherical Symmetry 

A thin, uniformly charged, spherical 

shell with total charge q, in cross 

section. Two Gaussian surfaces S1 

and S2 are also shown in cross 

section. Surface S2 encloses the 

shell, and S1 encloses only the 

empty interior of the shell.

In the  figure, applying Gauss’ law to surface 

S2, for which r ≥ R, we would find that

And, applying Gauss’ law to surface S1, for 

which r < R, 
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23-6 Applying Gauss’ Law: Spherical Symmetry 

Inside a sphere with a uniform volume charge density, the 

field is radial and has the magnitude

where q is the total charge, R is the sphere’s radius, and r is 

the radial distance from the center of the sphere to the point 

of measurement as shown in figure.

A concentric spherical Gaussian surface 

with r > R is shown in (a). A similar 

Gaussian surface with r < R is shown in (b).
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SUMMARY
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23  Summary

Gauss’ Law
• Gauss’ law is

• the net flux of the electric field 
through the surface:

• Infinite non-conducting sheet

• Outside a spherical shell of charge

• Inside a uniform spherical shell

• Inside a uniform sphere of charge

Eq. 23-15

Eq. 23-20

Applications of Gauss’ Law
• surface of a charged conductor

• Within the surface E=0.
• line of charge

Eq. 23-6

Eq. 23-11

Eq. 23-6

Eq. 23-12

Eq. 23-13

Eq. 23-16


